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Presentation Outline

Summary:

- Spectral Clustering - Brief Introduction
- Sound Source Segregation using Spectral Clustering

- Application Examples:

Main Melody Detection
- Voicing Detection
- Timbre Recognition

Mono to Stereo Up-mixing

- Conclusions
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Spectral Clustering - A brief introduction (1)

Spectral Clustering

- How many clusters?

- Alternative to the EM and k-means traditional algorithms:
- Does not assume a convex shaped data representation
- Does not assume Gaussian distribution of data

- Does not present multiple minima in log-likelihood

- Avoids multiple restarts of the iterative process
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Spectral Clustering - A brief introduction (2)

Spectral Clustering

- Relies on the eigenstructure of a similarity matrix to partition
points into disjoint clusters

- Points in the same cluster = high similarity

- Points in different clusters - low similarity

- Normalized Cut

- Proposed in the area of Computer Vision [1]
- Global criterion for segmenting graphs

- Uses an dffinity (i.e. similarity) matrix

- encode topological knowledge about a problem

[1]J. Shi and J. Malik, "Normalized cuts and image segmentation," IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 22, pp. 888-905, 2000.
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Spectral Clustering - Sound Source Segregation (1)
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Spectral Clustering - Sound Source Segregation (2)

Sinusoidal Modeling

- Sum of most prominent sinusoids L. )
-Maximum of 20 sinusoids/frame oxln) = Iz:am o (E fog -+ @m)
=1
-Window = 46ms ; hop = 11ms

- Amplitude, Frequency, Phase

Spectral Peaks

Sinusoidal )
W . Analysis

- Construct a graph over a texture window of the sound mixture (e.g.150ms)
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- Provides time integration

- Approaches partial tracking and source separation jointly, which have been
traditionally two separated, consecutive stages
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Spectral Clustering - Sound Source Segregation (3)

- Sound Source Segregation

- Use of a flexible framework for representation of perceptual cues, from ASA [2]

-expressed in terms of similarity between time-frequency components - similarity space
- Frequency proximity

- Amplitude proximity
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- Harmonicity proximity (HWPS)
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- Separation task L )

- Carried out by clustering components that are close in the similarity space

-Use global Normalized Cut criterion

- partition the graph into clusters (i.e. sources), using perceptual similarity cues

[2] A. Bregman, Auditory Scene Analysis - The Perceptual Organization of Sound: MIT Press, 1990.
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Spectral Clustering - Sound Source Segregation (4)
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Segregating the most prominent voice
~>Jazz examples ‘*ﬂ Q’J

->U2’s Helter Skelter [live] Q‘J
More real-world examples at: http://opihi.cs.uvic.ca/NormCutAudio/index.php?page=data
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Spectral Clustering - Sound Source Segregation (5)

- Want to give it a try? ©

http://marsyas.sourceforge.net

> peakClustering myAudio.wav

[3] M. Lagrange, L. G. Martins, J. Murdoch, and G. Tzanetakis, "Normalized Cuts for Predominant Melodic Source Separation,"
IEEE Transactions on Audio, Speech, and Language Processing (in press), 2007.
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Application Example

Main Melody Detection
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Spectral Clustering > Main Melody Detection (1)

Main melody detection in real-world polyphonic music signals:

- Melody is one of the key musical descriptors of a song

Monophonic pitch estimation techniques perform poorly on polyphonic signals

- Too complex spectra from simultaneously sounding sources (too much spectral
overlapping occurs)

Common approach for main melody estimation

- Start with multipitch extraction followed by predominant pitch estimation [3, 4]

Spectral Clustering allows segregating the most prominent clusters over time

- Resynthesize the segregated main voice clusters
- (Even nicer: estimate pitch of each cluster directly in feature domain = future work)

- Easier to perform pitch estimation using well known monophonic pitch estimation
techniques

[3] R. P. Paiva, T. Mendes, and A. Cardoso, "Melody detection in polyphonic musical signals: Exploiting perceptual rules, note
salience, and melodic smoothness," Computer Music Journal, vol. 30, pp. 80-98, Win 2006.

[4] A. Klapuri and M. Davy, "Signal Processing Methods for Music Transcription,” Springer-Verlag, 2006.
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Spectral Clustering > Main Melody Detection (2)

- Some experimental results [3]:

- MIREX 2005 automatic melody extraction evaluation exchange dataset

Included the pitch contour ground-truth for each song

http://www.music-ir.org/mirex2005/index.php/Main_Page

- Dataset of 10 real-world polyphonic music recordings

Availability of the original isolated tracks

- Allowed to generate ground-truth and perform evaluations

http://opihi.cs.uvic.ca/NormCutAudio/index.php?page=data

- Comparison with two techniques:

Monophonic pitch estimation (from Praat)

State-of-the-Art multipitch and main melody estimation algorithm [5]

[3] M. Lagrange, L. G. Martins, J. Murdoch, and G. Tzanetakis, "Normalized Cuts for Predominant Melodic Source Separation,"
IEEE Transactions on Audio, Speech, and Language Processing (in press), 2007.

[5] A. Klapuri, "Multiple fundamental frequency estimation by summing harmonic amplitudes,” in International Conference on
Music Information Retrieval (ISMIR) Victoria, BC, Canada, 2006.
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Spectral Clustering > Main Melody Detection (3)

Results on the MIREX 2005 dataset

Distribution of Errors (%)

NORMALIZED PITCH ERRORS AND GROSS ERRORS FOR MIREX DATASET
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| Results on the 10 real-world recordings dataset

Distribution of Errors (%)

Nomalized Pitch Eror (NE) ' NORMALIZED PITCH ERRORS AND GROSS ERRORS ACROSS CORPUS
W, . NE | NE.,, || GE(%) | GE — 8V¢(%)
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V Milap 0.55 0.26 55.70 48.68
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Application Example

Voicing Detection
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Spectral Clustering - Voicing Detection (1)

Identifying where the melody pitches occur in a song

- Evaluation performed on the same 10 real-world songs dataset

- http://opihi.cs.uvic.ca/NormCutAudio/index.php?page=data

- Ground truth was created manually from the isolated melody tracks
- Evaluated three feature sets:

- MFCC features extracted from the mixed signal of each song

- MFCC features extracted from the segregated main voice signal
using Spectral Clustering

- Cluster Peak Ratio (CPR) feature [3] extracted from the segregated

main voice clusters using Spectral Clustering i
max(A")

CPR = :
mean(A*)

[3] M. Lagrange, L. G. Martins, J. Murdoch, and G. Tzanetakis, "Normalized Cuts for Predominant Melodic Source Separation,"
IEEE Transactions on Audio, Speech, and Language Processing (in press), 2007.
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Spectral Clustering - Voicing Detection (1)

Machine Learning framework

- Training of two classifiers on three feature sets:

- ZeroR = baseline (i.e. random classifier)
- Naive Bayes classifier (NB)

- Support Vector Machine (SVM)

- Results [3]:  voicinG DETECTION PERCENTAGE ACCURACY

ZeroR | NB | SVM
VMuyroo 55 69 69
VSepymrec 35 17 86
VSepopgr 55 73 74

[3] M. Lagrange, L. G. Martins, J. Murdoch, and G. Tzanetakis, "Normalized Cuts for Predominant Melodic Source Separation,"
IEEE Transactions on Audio, Speech, and Language Processing (in press), 2007.
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Application Example

Timbre Recognition
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Spectral Clustering - Timbre Recognition (1)

Framework for timbre classification

Timbre
Models

~
J

Sound Matching
Source E E :
Formation

it >
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Analysis
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[

- polyphonic, multi-instrumental audio signals
- Artificial mixtures of 2-, 3- and 4-notes from real instruments
- Automatic separation of the sound sources

- Sound sources and events are reasonably captured, corresponding in most cases
to played notes

- Matching of the separated events to a collection of 6 timbre models
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Spectral Clustering - Timbre Recognition (2)

6 instruments modeled [10]:

- Piano, violin, oboe, clarinet, trumpet and alto sax

- Modeled as a set of time-frequency templates
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Describe the typical evolution in time of the spectral envelope of a note

- Matches the salient peaks of the spectrum

[10] J. ). Burred, A. Rébel, and X. Rodet, "An Accurate Timbre Model for Musical Instruments and its Application to Classification," in
First Workshop on Learning the Semantics of Audio Signals, Athens, Greece, 2006.
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Spectral Clustering > Timbre Recognition (3)

- Matching Examples

Strong Matching Weak Matching

Piano cluster €<-> piano prototype Alto sax cluster €<-> piano prototype
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[3] L. G. Martins, J. J. Burred, G. Tzanetakis, and M. Lagrange, "Polyphonic Instrument Recognition using Spectral Clustering," in 8th
International Conference on Music Information Retrieval (ISMIR 2007) Vienna, Austria, 2007.
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Spectral Clustering > Timbre Recognition (4)

- Instrument presence detection in mixtures of notes

- 54 different combinations of instruments and notes

2-, 3- and 4-note mixtures
- 18 audio files x 3 = 54 audio examples in the dataset

- 56% of instruments occurrences correctly detected, with a precision of 64%

Oboe and alto sax as a good examples of good detections

Piano as the most difficult instrument (mainly in 4-note mixtures)

I:I ‘:I Performance degrades...>

2-note J-note 4-note total
RCL. PRC F1 | RCL. PRC F1 | RCL PRC F1 | RCL. PRC

83__100 01 | 2210036 |C0_ 0 0> 23 100

Q00 75 8|CI00 46 6»|C67 A0 | 86 50 63
33 100 50| 33 10 50| 40 8 5] 3% 93 52
8 100 04| 58 100 74| 58 64 61| 61 8 73

6] _6___67 | 83 45 9| 8 3 50 | 80 43 56
Qw8 DCET 60 6DC60 75 6P| 67 62 64
71 59

15 19 56 04

36 56 50| (36) (64) 60
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Application Example

Semi-automatic Mono to Stereo

Up-mixing
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Spectral Clustering > Mono to Stereo Up-mixing (1)

Convert monophonic recordings to stereo

- Spectral Clustering for Sound Source Formation

- build a middle level representation of the sound using a perceptually
motivated clustering of spectral components

- include spatial panning information when converting from mono
to stereo

- allows the user to define panning information for major sound sources

- enables enhancing the stereophonic immersion quality of the resulting

sound

Monophonic . ’ N ‘ Source
Pannln
L ’. & Add Vqume
eft Channel
\
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Spectral Clustering - Mono to Stereo Up-mixing (2)

FFT Resynthesis

- A Fourier based approach is considered

A mask is assigned to each peak
- The amplitude of each frequency bin

is weighted accordingly:

my(k.t) g-(v-(1—=p)+ (11— g)my(k,t—1) A piano source spectral mask
me(k,t) = g¢g-(v-(1+p)+(1-gm.(k,t—1)

- Spectral components of each source may be panned to different
azimuths

DEMO [6]

[6] M. Lagrange, L. G. Martins, and G. Tzanetakis, "Semi-Automatic Mono to Stereo Up-mixing using Sound Source Formation," in
122nd Convention of the Audio Engineering Society, Vienna, Austria, 2007.

w @ Music Signal Analysis using Spectral Clustering
FEUP




Conclusions
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Discussion (1)

Proposal of a framework for sound source segregation

Based on a Spectral Clustering technique

Approaches partial tracking and source separation jointly, using a flexible
framework for including new perceptually motivated auditory cues

does not require any a priori information about pitch of sources

Shows good potential for applications in:
source segregation/separation,
monophonic or polyphonic instrument classification,
Main melody estimation
pre-processing for polyphonic transcription, ...
Sources VS Events

- Weak matching of separated clusters to actual sources...

- What are we segregating? Original Sources or sound events?
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Discussion (2)

. Future work:

Inclusion of new perceptually motivated auditory cues
Time and frequency masking
Stereo placement of spectral components [7]
Timbre models as a priori information
Analysis of time events as side information for Sound Source Formation

Prior time segmentation of music notes/events

- Automatically define the duration of the analysis texture window
Extraction of new descriptors directly from segregated cluster parameters:

Pitch, spectral features, frequency tracks, timing information

Models of attention of the human auditory system when performing auditory scene

analysis ch
t
/ p|“C \
v /

loudness

timbre waveshape

[7] G. Tzanetakis, L. G. Martins, "Stereo Panning Information for Music Information Retrieval Tasks®, submitted to the 2008 IEEE
International Conference on Acoustics, Speech and Signal Processing, Las Vegas, USA.
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