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Presentation Outline

•
 

Summary:

–

 

Spectral Clustering -

 

Brief Introduction

–

 

Sound Source Segregation using Spectral Clustering

–

 

Application Examples:

•

 

Main Melody Detection

•

 

Voicing Detection

•

 

Timbre Recognition

•

 

Mono to Stereo Up-mixing

–

 

Conclusions
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Spectral Clustering –
 

A brief introduction (1)

•
 

Spectral Clustering

–

 
Alternative to the EM

 
and k-means

 
traditional algorithms:

•

 

Does not assume a convex shaped data representation

•

 

Does not assume Gaussian distribution of data

•

 

Does not present multiple minima in log-likelihood 

Æ Avoids multiple restarts of the iterative process

Æ How many clusters?
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Spectral Clustering –
 

A brief introduction (2)

•
 

Spectral Clustering

–

 
Relies on the eigenstructure

 
of a similarity matrix

 
to partition 

points into disjoint clusters

•

 

Points in the same cluster Æ high similarity

•

 

Points in different clusters Æ low similarity

–

 
Normalized Cut

•

 

Proposed in the area of Computer Vision

 

[1]

•

 

Global criterion for segmenting graphs

•

 

Uses an affinity

 

(i.e. similarity) matrix

Æ encode topological knowledge about a problem

[1] J. Shi and J. Malik, "Normalized cuts and image segmentation," IEEE Transactions on

 

Pattern Analysis and Machine Intelligence, 
vol. 22, pp. 888-905, 2000.
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Spectral Clustering Æ Sound Source Segregation (1)

•
 

Overall view

Sinusoidal 
Synthesis

Texture Window

Spectral Peaks
(over Texture Window)

150ms

Spectral 
Peaks

46ms

Sinusoidal 
Analysis

Spectral 
Peaks

46ms

Cluster Selection

Similarity Computation

Normalized Cut
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Spectral Clustering Æ Sound Source Segregation (2)

•
 

Sinusoidal Modeling

–

 

Sum of most prominent sinusoids

•Maximum of 20 sinusoids/frame

•Window = 46ms ; hop = 11ms

•Amplitude, Frequency, Phase

–

 

Construct a graph over a texture window of the sound mixture (e.g.150ms)

•Provides time integration

–

 

Approaches partial tracking and source separation jointly, which

 

have been 

traditionally two separated, consecutive stages

time

fr
eq

u
en

cySinusoidal 
Analysis
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Spectral Clustering Æ Sound Source Segregation (3)

•
 

Sound Source Segregation

–

 

Use of a flexible framework for representation of perceptual cues, from ASA [2] 

•expressed in terms of similarity between time-frequency components Æ similarity space

–

 

Frequency proximity

–

 

Amplitude proximity

–

 

Harmonicity proximity (HWPS)

–

 

Separation task

•Carried out by clustering components that are close in the similarity space

•Use global Normalized Cut

 

criterion 

–

 

partition the graph into clusters (i.e. sources), using perceptual similarity cues

Similarity Computation

Normalized Cut

Cluster Selection

[2] A. Bregman, Auditory Scene Analysis –

 

The Perceptual Organization of Sound: MIT Press, 1990.
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Spectral Clustering Æ Sound Source Segregation (4)
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More real-world examples at: http://opihi.cs.uvic.ca/NormCutAudio/index.php?page=data

Segregating the most prominent voice

ÆJazz examples

ÆU2’s Helter Skelter [live]  









http://opihi.cs.uvic.ca/NormCutAudio/index.php?page=data
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Spectral Clustering Æ Sound Source Segregation (5)

•
 

Want to give it a try? ☺

[3] M. Lagrange, L. G. Martins, J. Murdoch, and G. Tzanetakis, "Normalized Cuts for Predominant Melodic Source Separation," 
IEEE Transactions on Audio, Speech, and Language Processing (in press), 2007.

http://marsyas.sourceforge.net

> peakClustering myAudio.wav
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Application Example

Main Melody Detection
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Spectral Clustering Æ Main Melody Detection (1)

•

 
Main melody detection in real-world polyphonic music signals:

–

 

Melody is one of the key musical descriptors of a song

•

 

Monophonic pitch estimation techniques perform poorly on polyphonic signals

–

 

Too complex spectra from simultaneously sounding sources (too much spectral 

overlapping occurs) 

•

 

Common approach for main melody estimation 

Æ Start with multipitch extraction followed by predominant pitch estimation [3, 4]

•

 

Spectral Clustering

 

allows segregating the most prominent clusters over time

Æ Resynthesize the segregated main voice clusters

Æ (Even nicer: estimate pitch of each cluster directly in feature domain Æ future work)

Æ Easier to perform pitch estimation using well known monophonic pitch estimation 

techniques

[3] R. P. Paiva, T. Mendes, and A. Cardoso, "Melody detection in polyphonic musical signals: Exploiting perceptual rules, note 
salience, and melodic smoothness," Computer Music Journal, vol. 30, pp. 80-98, Win 2006.

[4] A. Klapuri and M. Davy, "Signal Processing Methods for Music

 

Transcription," Springer-Verlag, 2006.
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Spectral Clustering Æ Main Melody Detection (2)

•
 

Some experimental results [3]:

–

 

MIREX 2005

 

automatic melody extraction evaluation exchange

 

dataset

•

 

Included the pitch contour ground-truth for each song 

•

 

http://www.music-ir.org/mirex2005/index.php/Main_Page

–

 

Dataset of 10 real-world polyphonic music recordings

•

 

Availability of the original isolated tracks 

Æ Allowed to generate ground-truth and perform evaluations

•

 

http://opihi.cs.uvic.ca/NormCutAudio/index.php?page=data

–

 

Comparison with two techniques:

•

 

Monophonic pitch estimation (from Praat)

•

 

State-of-the-Art multipitch

 

and main melody estimation algorithm [5]

[3] M. Lagrange, L. G. Martins, J. Murdoch, and G. Tzanetakis, "Normalized Cuts for Predominant Melodic Source Separation," 
IEEE Transactions on Audio, Speech, and Language Processing (in press), 2007.

[5] A. Klapuri, "Multiple fundamental frequency estimation by summing harmonic amplitudes," in International Conference on 
Music Information Retrieval (ISMIR) Victoria, BC, Canada, 2006.

http://www.music-ir.org/mirex2005/index.php/Main_Page
http://opihi.cs.uvic.ca/NormCutAudio/index.php?page=data
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Spectral Clustering Æ Main Melody Detection (3)

Results on the MIREX 2005 dataset

Results on the 10 real-world recordings dataset
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Application Example

Voicing Detection



16Music Signal Analysis using Spectral Clustering

Spectral Clustering Æ Voicing Detection (1)

•
 

Identifying where the melody pitches occur in a song

–

 
Evaluation performed on the same 10 real-world songs dataset

•

 

http://opihi.cs.uvic.ca/NormCutAudio/index.php?page=data

•

 

Ground truth was created manually from the isolated melody tracks

–

 
Evaluated three feature sets:

•

 

MFCC

 

features extracted from the mixed signal

 

of each song

•

 

MFCC

 

features extracted from the segregated main voice signal

 using Spectral Clustering

•

 

Cluster Peak Ratio (CPR)

 

feature [3] extracted from the segregated 

main voice clusters using Spectral Clustering

[3] M. Lagrange, L. G. Martins, J. Murdoch, and G. Tzanetakis, "Normalized Cuts for Predominant Melodic Source Separation," 
IEEE Transactions on Audio, Speech, and Language Processing (in press), 2007.

http://opihi.cs.uvic.ca/NormCutAudio/index.php?page=data
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Spectral Clustering Æ Voicing Detection (1)

•
 

Machine Learning framework

–

 
Training of two classifiers on three feature sets:

•

 

ZeroR Æ baseline (i.e. random classifier)

•

 

Naive Bayes

 

classifier (NB)

•

 

Support Vector Machine

 

(SVM)

–

 
Results [3]:

[3] M. Lagrange, L. G. Martins, J. Murdoch, and G. Tzanetakis, "Normalized Cuts for Predominant Melodic Source Separation," 
IEEE Transactions on Audio, Speech, and Language Processing (in press), 2007.
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Application Example

Timbre Recognition
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Spectral Clustering Æ Timbre Recognition (1)

•
 

Framework for timbre classification

–

 

polyphonic, multi-instrumental audio signals

•

 

Artificial mixtures of 2-, 3-

 

and 4-notes from real instruments

–

 

Automatic separation of the sound sources

•

 

Sound sources and events are reasonably captured, corresponding in most cases 

to played notes

–

 

Matching of the separated events to a collection of 6 timbre models

note 1

note n

Sound 
Source 

Formation

note 1 / inst 1

note n / inst i

Timbre
Models

Matching

Matching
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Spectral Clustering Æ Timbre Recognition (2)

•
 

6 instruments modeled [10]:

–

 
Piano, violin, oboe, clarinet, trumpet and alto sax

–

 
Modeled as a set of time-frequency templates

•

 

Describe the typical evolution in time of the spectral envelope of a note

–

 

Matches the salient peaks of the spectrum
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[10]  J. J. Burred, A. Röbel, and X. Rodet, "An Accurate Timbre Model for Musical Instruments and its Application to Classification," in 
First Workshop on Learning the Semantics of Audio Signals, Athens, Greece, 2006.
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Spectral Clustering Æ Timbre Recognition (3)

•
 

Matching Examples

Weak Matching

Alto sax cluster ÅÆ piano prototype

Strong Matching

Piano cluster ÅÆ piano prototype

[3] L. G. Martins, J. J. Burred, G. Tzanetakis, and M. Lagrange,

 

"Polyphonic Instrument Recognition using Spectral Clustering," in 8th 
International Conference on Music Information Retrieval (ISMIR 2007) Vienna, Austria, 2007.
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Spectral Clustering Æ Timbre Recognition (4)

•
 

Instrument presence detection in mixtures of notes

–

 

54 different combinations of instruments and notes

•

 

2-, 3-

 

and 4-note mixtures
–

 

18 audio files x 3 = 54 audio examples in the dataset

–

 

56%

 

of instruments occurrences correctly detected, with a precision

 

of 64%

•

 

Oboe and alto sax as a good examples of good detections 

•

 

Piano as the most difficult instrument (mainly in 4-note mixtures)

Performance degrades...
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Application Example

Semi-automatic Mono to Stereo

Up-mixing
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Spectral Clustering Æ Mono to Stereo Up-mixing (1)

•
 

Convert monophonic recordings to stereo

–

 
Spectral Clustering for Sound Source Formation

•

 

build a middle level representation of the sound using a perceptually 

motivated clustering of spectral components

–

 
include spatial panning information when converting from mono 
to stereo

•

 

allows the user to define panning information for major sound sources 

Æ enables enhancing the stereophonic immersion quality of the resulting 

sound

Window FFT

Window IFFT
Left Channel

Monophonic
Sound Source

Right Channel Overlap
& Add

Panning
&

Volume

Source 
Formation
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Spectral Clustering Æ Mono to Stereo Up-mixing (2)

•
 

FFT Resynthesis

–

 
A Fourier based approach is considered

•

 

A mask is assigned to each peak

•

 

The amplitude of each frequency bin 

is weighted accordingly:

–

 
Spectral components of each source may be panned to different 
azimuths

A piano source spectral mask

DEMO [6]

[6] M. Lagrange, L. G. Martins, and G. Tzanetakis, "Semi-Automatic Mono to Stereo Up-mixing using Sound Source Formation," in 
122nd Convention of the Audio Engineering Society, Vienna, Austria, 2007.
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Conclusions
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Discussion (1)

•
 

Proposal of a framework for sound source segregation

–

 

Based on a Spectral Clustering technique

–

 

Approaches partial tracking and source separation jointly, using

 

a flexible 
framework for including new perceptually motivated auditory cues

–

 

does not require any a priori information about pitch of sources

–

 

Shows good potential for applications in: 

•

 

source segregation/separation, 

•

 

monophonic or polyphonic instrument classification, 

•

 

Main melody estimation

•

 

pre-processing for polyphonic transcription, ...

–

 

Sources

 

VS Events

•

 

Weak matching of separated clusters to actual sources...

–

 

What are we segregating? Original Sources or sound events? 
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Discussion (2)

•
 

Future work:

–

 

Inclusion of new perceptually motivated auditory cues

•

 

Time and frequency masking

•

 

Stereo placement of spectral components [7]

•

 

Timbre models as a priori information

–

 

Analysis of time events as side information for Sound Source Formation

•

 

Prior time segmentation of music notes/events

Æ Automatically define the duration of the analysis texture window

–

 

Extraction of new descriptors directly from segregated cluster parameters:

•

 

Pitch, spectral features, frequency tracks, timing information 

–

 

Models of attention of the human auditory system when performing

 

auditory scene 
analysis

[7] G. Tzanetakis, L. G. Martins, "Stereo Panning Information for Music Information Retrieval Tasks“, submitted to the 2008 IEEE 
International Conference on Acoustics, Speech and Signal Processing, Las Vegas, USA.

waveshape

pitch

loudness

timbre
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THANK YOU!

Questions?

lmartins@inescporto.pt
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